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Abstract. A Hilbert space path integral for the dissipative dynamics of matter in thermal
radiation fields is derived from the Hamiltonian of quantum electrodynamics. This path integral
represents the conditional transition probability of a stochastic Markov process as a sum over
sample trajectories in Hilbert space. The realizations of the process are piecewise deterministic
paths broken by instantaneous quantum jumps. It is shown that the operators which define the
possible quantum jumps form a continuous family parametrized by the polarization vector of the
emitted or absorbed photons. The stochastic process is shown to be representation-independent
and to be invariant with respect to space rotations. The precise physical interpretation of the
stochastic process is given. In particular, the expansion of the density matrix in terms of quantum
jumps is derived for finite temperatures from the Hilbert space path integral.

1. Introduction

In many applications of quantum electrodynamics one is not interested in solving the
basic equations in its full generality. Usually one would like to restrict the mathematical
description to the evolution of a few number of degrees of freedom and to account for the
remaining degrees of freedom by introducing dissipation and noise into the equations of
motion [1]. In this method the relevant degrees of freedom constitute an open or reduced
system that is coupled to an environment. For example, in quantum optics one eliminates
either the matter degrees of freedom to describe the behaviour of certain radiation modes, or
the degrees of freedom of the quantized radiation field in order to describe the behaviour of
atoms or molecules in external driving fields. Whereas the conventional theory uses density
matrix equations, it has recently been shown that it is possible to use stochastic processes for
pure states to model the behaviour of reduced quantum systems. Phenomenological models
based on piecewise deterministic jump processes [2–5] as well as on diffusion processes
[6–10] have been suggested. It has been demonstrated that this stochastic approach yields
both important conceptual insights into the dynamics, and efficient numerical simulation
methods [11].

The starting point of the stochastic approach to the reduced system dynamics is the
description of statistical ensembles of quantum systems in terms of probability distributions
on its space of states, i.e. the underlying projective Hilbert space [12]. We write
P [ψ, t ] Dψ Dψ∗ for the probability to find at timet the system in a state described by
some wavefunction within the volume element Dψ Dψ∗ aroundψ . The volume element of
the Hilbert space is defined by

Dψ Dψ∗ ≡
∏
x

i

2
dψ(x) dψ∗(x) (1)
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where the product is extended over a complete set of quantum numbersx. More precisely,
the probability densityP [ψ, t ] is a distribution on the projective Hilbert space since we
require that it does not depend on the phase of the wavefunction and that it vanishes outside
the unit sphere in Hilbert space. The normalization ofP [ψ, t ] reads∫

Dψ Dψ∗ P [ψ, t ] = 1 (2)

where the integration is extended over the whole Hilbert space. A precise mathematical
formulation of probability measures on Hilbert space is given in [13, 14] and a geometrical
formulation of stochastic processes in Hilbert space can be found in [15]. For example,
the simplest probability distribution that describes a pure stateϕ and that fulfills these
requirements takes the form (supressing the time argument)

P [ψ ] =
∫ 2π

0

dχ

2π
δ[eiχϕ − ψ ] (3)

whereδ denotes the Dirac measure on the Hilbert space

δ[ψ(x)] ≡
∏
x

δ(Reψ(x))δ(Imψ(x)) (4)

and Re and Im denote the real and imaginary parts, respectively. In the formulation of
quantum statistical ensembles in terms of probability distributions the conventional density
matrix appears as the covariance matrix of the stochastic wavefunction

ρt (x, x
′) ≡

∫
Dψ Dψ∗ ψ(x)ψ∗(x ′)P [ψ, t ]. (5)

For a closed quantum system with some HamiltonianH we demand that the time
evolution of the wavefunction is governed by the Schrödinger equation i¯hψ̇ = Hψ . Given
some initial probability distributionP0[ψ ] the time dependence of the probability distribution
is then obtained from the Liouville equation

P [ψ, t ] = P0[eiHt/h̄ψ ] (6)

where the unitary invariance of the measure (1) has been used. On the basis of the
Liouville equation the time-dependent wavefunctionψ(t) becomes a deterministic Markov
process whose realizations are solutions of the deterministic Schrödinger equation, the initial
conditions being randomly distributed according to the initial distributionP0[ψ ].

Of course, the true interest in the stochastic formulation lies in its generalization to
open quantum systems that are coupled to an environment. A situation of particular interest
arises when the quantum system of interest is coupled to a thermal reservoir with a large
number of degrees of freedom. Invoking the Markov approximation it has been shown
in [16, 17] that the dynamics of the wavefunction of the reduced system that is obtained
by eliminating the degrees of freedom of the reservoir represents a piecewise deterministic
stochastic jump process in the state space of the open system. The starting point of the
derivation of this stochastic process is the determinstic Markov process defined by (6),
whereH is the Hamiltonian for the total system composed of the open system and the
reservoir. The derivation in [16, 17] thus shows (i) that it is indeed possible to describe the
full quantum dynamics of open systems by means of a stochastic process in Hilbert space,
and (ii) that the stochastic evolution results from the unitary dynamics of the total system.

The present paper is structured as follows. It is shown in section 2 that the above
derivation can be generalized to include the most general case of a bound system (an
atom or molecule, for example) that interacts with a quantized radiation field in thermal
equilibrium through the interaction Hamiltonian of quantum electrodynamics. The result is
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a unique stochastic representation of the time evolution of the system wavefunction in terms
of a piecewise deterministic Markovian jump process [18] in the state space of the reduced
system. It turns out that, in contrast to the processes formulated in [2–4], the possible
quantum jumps are induced by acontinuousfamily of jump operators.

Furthermore, it will be shown that the stochastic process can be represented as a Hilbert
space path integral. The latter gives a decomposition of the conditional transition probability
in terms of the contributions from all sample paths in Hilbert space that connect the
given endpoints. One finds that the Hilbert space path integral yields an expansion of
the conditional transition probability of the stochastic process with respect to the number
of quantum jumps.

It will be demonstrated in section 3 that the stochastic formulation of the dynamics
obtained represents a fully consistent theory which admits a clear physical interpretation. In
particular, it is shown that it is not necessary to apply the continuous measurement theory
to supply evidence for the use of stochastic processes in the description of open quantum
systems [4, 5]. Furthermore, it is proven that the stochastic process is unitarily covariant.
This implies that the process does not depend on the specific representation of the state space
of the open system. In addition, the stochastic process is shown to be rotationally invariant
if the radiation field is isotropic. This means that realizations of the process which arise
from each other by a space rotation occur with equal probability. We discuss the relation
of the theory presented here to those formulations that are based on the unravelling of the
quantum master equation [5] by means of various measurement schemes. The difference
between these approaches is illustrated by a numerical simulation. Finally, we establish the
relation of our approach to the Srinivas and Davies theory of photocounting. To this end we
derive from the Hilbert space path integral representation of the propagator an expansion
of the density operator in terms of the number of quantum jumps for a reduced system at
finite temperature.

2. Hilbert space path integral for the reduced system dynamics

In this section we consider a bound quantum system, e.g. an atom or molecule, which
interacts with a quantized radiation field in thermal equilibrium at temperatureT . The
bound system is the open orreduced system we are interested in, whereas the radiation
field represents a thermal reservoir with an infinite number of degrees of freedom. It will be
shown that on eliminating the reservoir degrees of freedom in the Markov approximation,
the dynamics of the states of the reduced system is described by a stochastic process in the
corresponding projective Hilbert space of the open system. The propagator of the stochastic
process is then represented as a Hilbert space path integral, that is, as a sum over all sample
paths of the process.

2.1. Microscopic theory

The atom or molecule is described by some HamiltonianHm that interacts with a quantized
radiation field the free Hamiltonian of which may be represented as

Hrad =
∑
k,λ

h̄ωk(b
†
kλbkλ + 1

2). (7)

For simplicity we have decomposed the radiation field into Fourier modes of a periodic
box of volumeV . These modes are labelled by the wavevectork and two corresponding
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polarization vectorsλ with k · λ = 0. The dispersion isωk = c|k| = ck, wherec is the
speed of light. The field operators obey the commutation relation

[bkλ, b
†
k′λ′ ] = δkk′δλλ′ . (8)

The energy eigenstatesϕα of Hrad are orthonormalized Fock states

ϕα = |{Nα
kλ}〉 = | . . . , Nα

kλ, . . .〉 (9)

where Nα
kλ denotes the occupation number of the mode(k,λ). The corresponding

eigenenergies are given by

εα =
∑
k,λ

h̄ωk(N
α
kλ + 1

2). (10)

The interaction Hamiltonian may be written

HI = −e
c

∫
d3x j(x)A(x) (11)

whereA is the vector potential,j the electron current, ande the electron charge. In the
dipole approximation this interaction may be replaced by [19]

HI = −eD · E (12)

whereE is the electric field operator in the Schrödinger picture:

E = i
∑
k,λ

√
2πh̄ωk
V

(bkλλ − b
†
kλλ∗) (13)

and D denotes the dipole operator of the system under consideration. Finally, the total
Hamiltonian governing the coupled system of matter and radiation degrees of freedom is
given by

H = Hm +Hrad +HI . (14)

For the derivation of the stochastic process describing the matter degrees of freedom to
be given in the next subsection we need to decompose the interaction HamiltonianHI into
eigenoperators ofHm. The latter are given by

A†(ω) = A(−ω) ≡
∑

E−E′=h̄ω
5(E)D5(E′). (15)

Here,5(E) denotes the projector onto the eigenspace ofHm with energyE and the sum
is extended over those energiesE andE′ with a fixed energy difference of ¯hω. Obviously
we have

[Hm,A
†(ω)] = h̄ωA†(ω) [Hm,A(ω)] = −h̄ωA(ω). (16)

The decomposition ofHI into these eigenoperators then reads

HI = −e
∑
ω

A†(ω) · E = −e
∑
ω

A(ω) · E. (17)
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2.2. Stochastic dynamics of the matter degrees of freedom

The radiation field is assumed to be in thermal equilibrium at temperatureT . The
corresponding stationary probability distributionPb[ψb] on the Fock space of the bath may
therefore be written as [17]

Pb[ψb] =
∑
α

pα

∫ 2π

0

dχ

2π
δb[e

iχϕα − ψb] (18)

where δb denotes the Dirac measure on the Hilbert space of the bath andpα =
exp[−εα/kBT ]/Z. (Z is the partition function andkB the Boltzmann constant.)

The most important quantity that is to be derived in order to construct a stochastic
process for the reduced system dynamics is the conditional transition probability in the
interaction pictureT̃ [ψ, t |ψ̃, t0] (also called propagator). This quantity gives the probability
density to find at timet ≡ t0+τ (τ > 0) the reduced system in the stateψ under the condition
that at timet0 the stateψ̃ has been given. Starting from the Liouville formulation of the
total system and assuming the reduced system and the bath to be statistically independent
at time t0 one obtains the following exact expression [17]:

T̃ [ψ, t |ψ̃, t0] =
∫ 2π

0

dχ

2π

∑
α,β

wαβpβδ[e
iχw

−1/2
αβ Lαβψ̃ − ψ ] (19)

where

Lαβψ̃ ≡ 〈ϕα|U(t, t0)ψ̃ϕβ〉b (20)

and

wαβ ≡ ‖Lαβψ̃‖2. (21)

In equation (20)U(t, t0) denotes the quantum mechanical time evolution operator of the
total system (atom + radiation field) in the interaction picture. The indexb of the angular
brackets indicates that the scalar product refers only to the bath variables. In equation (21)
‖ · · · ‖ is the norm in the state space of the atomic or molecular system. Finally,δ is the
Dirac measure on this state space.

The next step consists of the derivation of the short-time behaviour of the propagator.
To this end, we decompose the propagator as

T̃ [ψ, t |ψ̃, t0] = Td [ψ, t |ψ̃, t0] + Tn[ψ, t |ψ̃, t0] (22)

where

Td [ψ, t |ψ̃, t0] =
∫ 2π

0

dχ

2π

∑
α

wααpαδ[e
iχw−1/2

αα Lααψ̃ − ψ ] (23)

Tn[ψ, t |ψ̃, t0] =
∫ 2π

0

dχ

2π

∑
α 6=β

wαβpβδ[e
iχw

−1/2
αβ Lαβψ̃ − ψ ]. (24)

We shall analyse the behaviour of the propagatorT̃ [ψ, t0 + τ |ψ̃, t0] for small τ in the
so-called quantum optical case. In order to explain this in more detail we introduce three
different time scales. The first one is the correlation timeτb of the quantized modes of
the radiation field in thermal equilibrium, i.e.τb is the time scale of the decay of the bath
correlation functions. Second, we have the relaxation timeτm of the system which is the
time scale of the approach of the open system to the thermal equilibrium state. The third
time scaleτf is set by the inverse atomic or molecular frequencies; thusτf is of the order
of the period of the bound motion of the unperturbed atom or molecule. For the thermal
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radiation fieldτb ≈ h̄/kT which is of the order of 10−12/T s, where the temperature is
measured in Kelvin [1]. The time scaleτm is of the order of the natural lifetime, that is,
10−8 s or even much larger, wherasτf is of the order of 10−14 s [20]. Thus, even for low
temperatures we can choose a timeτ such that

τ � τb τ � τm τ � τf . (25)

The first condition justifies performing the Markov approximation for the propagator, which
enables one to eliminate the bath degrees of freedom. Once the bath variables have been
eliminated, the second and the third condition yield a short-time behaviour of the propagator
that leads to a differential Chapman–Kolmogorov equation which represents the stochastic
time evolution of the reduced system. On account of the second condition in (25) we
may employ second-order perturbation theory and the third condition enables us to use
the rotating-wave approximation when dealing with the bath correlation functions in the
interaction representation.

In second-order perturbation theory we find

Lαβ = δαβ +
∑
i,ω

f iαβ(ω)A
†
i (ω)+

∑
i,j,ω,ω′

g
ij

αβ(ω, ω
′)Ai(ω)A

†
j (ω

′) (26)

and

wαβ = δαβ − δαβ
∑
α′

∑
i,j,ω,ω′

[f iα′α(ω)]
∗f jα′α(ω

′)〈Ai(ω)A†
j (ω

′)〉

+
∑

i,j,ω,ω′
[f iαβ(ω)]

∗f jαβ(ω
′)〈Ai(ω)A†

j (ω
′)〉 (27)

where we have defined

f iαβ(ω) ≡ ie

h̄

∫ τ

0
ds eiωs〈ϕα|Ei(s)|ϕβ〉b (28)

g
ij

αβ(ω, ω
′) ≡ − e

2

h̄2

∫ τ

0
ds

∫ τ−s

0
ds ′ e−iω(s+s ′)+iω′s〈ϕα|Ei(s + s ′)Ej (s)|ϕβ〉b (29)

and Ei(s) = exp(iHrads/h̄)Ei exp(−iHrads/h̄) denotes the electric field operator in the
interaction picture. For notational simplicity we have introduced

〈B〉 ≡ 〈ψ̃ |B|ψ̃〉 (30)

for any system operatorB and the angular brackets denote the scalar product on the Hilbert
space of the open system. On using the approximations explained above one obtains for
the Fourier transform of the correlation tensor

γij (ω) ≡ e2

h̄2

∫ +∞

−∞
dt e−iωt

∫
Dψb Dψ∗

b 〈ψb|Ei(t)Ej |ψb〉bPb[ψb]

=
{
γ (ω)N̄(ω)δij ω > 0

γ (ω)(N̄(ω)+ 1)δij ω < 0
(31)

where

γ (ω) = 4

3

e2|ω|3
h̄c3

(32)

andN̄(ω) denotes the average number of photons of frequency|ω|:
N̄(ω) = (eh̄|ω|/kT − 1)−1. (33)
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Invoking now the Markov approximation for the stochastic process in the Hilbert space
of the reduced system and the rotating-wave approximation, one obtains by following the
lines given in [17] for the short-time behaviour ofTd

Td ≈
{

1 − τ
∑
ω>0

γ (ω)N̄(ω)〈C2(ω)〉 + γ (ω)(N̄(ω)+ 1)〈C1(ω)〉
}

×δ
[{

1 + τ

2

∑
ω>0

γ (ω)N̄(ω)(〈C2(ω)〉 − C2(ω))

+γ (ω)(N̄(ω)+ 1)(〈C1(ω)〉 − C1(ω))

}
ψ̃ − ψ

]
(34)

where we have introduced

C1(ω) ≡ A†(ω)A(ω) C2(ω) ≡ A(ω)A†(ω). (35)

The second part of the propagator can be written in the form

Tn =
∑
αβ

( ∑
ij

∑
ωω′

f i∗αβ(ω)f
j

αβ(ω
′)〈ψ̃ |Ai(ω)A†

j (ω
′)|ψ̃〉

)

×pβδ
[ ∑

i

∑
ω f

i
αβ(ω)A

†
i (ω)ψ̃

‖ ∑
i

∑
ω f

i
αβ(ω)A

†
i (ω)ψ̃‖

− ψ

]
. (36)

Equation (28) yields

f iαβ(ω) = −ee−i(εβ−εα−h̄ω)τ/h̄ − 1

εβ − εα − h̄ω 〈ϕα|Ei |ϕβ〉b. (37)

In accordance with the third condition in (25) we now assume that for a given pair(α, β)

of quantum numbers of the bath there exists precisely oneω such that

εβ − εα ∈ Iω ≡ [h̄ω −1, h̄ω +1] (38)

where1 ∼ h̄/τ is the energy uncertainty associated with the interaction timeτ . The matrix
element of the electric field operator in (38) is different from zero only if the Fock states
ϕα ≡ |{Nα

kλ}〉 andϕβ ≡ |{Nβ

kλ}〉 differ by ±1 in the occupation number of precisely one
mode. Thus, the only non-vanishing matrix elements are given by

〈ϕα|Ei |ϕβ〉b = i

√
2πh̄ωk
V

√
N
β

kλλi

for ϕα = | . . . , Nβ

kλ − 1, . . .〉 andϕβ = | . . . , Nβ

kλ, . . .〉 and by

〈ϕα|Ei |ϕβ〉b = i

√
2πh̄ωk
V

√
N
β

kλ + 1λ∗
i

for ϕα = | . . . , Nβ

kλ + 1, . . .〉 andϕβ = | . . . , Nβ

kλ, . . .〉.
Thus we obtain forεβ − εα ∈ Iω andω > 0∑

i,ω f
i
αβ(ω)A

†
i (ω)ψ̃

‖ ∑
i,ω f

i
αβ(ω)A

†
i (ω)ψ̃‖

= λ · A†(ω)ψ̃

‖λ · A†(ω)ψ̃‖
and forεβ − εα ∈ Iω andω < 0∑

i,ω f
i
αβ(ω)A

†
i (ω)ψ̃

‖ ∑
i,ω f

i
αβ(ω)A

†
i (ω)ψ̃‖

= λ∗ · A(−ω)ψ̃
‖λ∗ · A(−ω)ψ̃‖
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where the polarization vectorλ refers to that mode in which the occupation numbers differ
by ±1. The important point to note is that the quotients on the right-hand sides in the
above equations only depend on the energy differences and the polarization vector of the
corresponding mode. This fact leads to the following expression for the non-diagonal part
of the conditional transition probability:

Tn ≈ τ
∑
ω>0

γ (ω)N̄(ω)
3

8π

∫
d�k

∑
λ

〈λ∗ · A(ω)λ · A†(ω)〉δ
[

λ · A†(ω)ψ̃

‖λ · A†(ω)ψ̃‖ − ψ

]

+τ
∑
ω<0

γ (ω)(N̄(ω)+ 1)
3

8π

∫
d�k

∑
λ

〈λ · A(ω)λ∗ · A†(ω)〉

×δ
[

λ∗ · A†(−ω)ψ̃
‖λ∗ · A†(−ω)ψ̃‖ − ψ

]
.

Here, d�k denotes the element of the solid angle around the direction of the wavevector
k and

∑
λ means the sum over the corresponding two independent polarizations. For the

sake of a compact notation we introduce the abbreviation∫
dω(λ) f (λ) ≡ 3

8π

∫
d�k

∑
λ

f (λ). (39)

Clearly the measure dω(λ) is normalized such that∫
dω(λ) λ∗

i λj = δij . (40)

Moreover, for integrandsf (λ) that have the property of phase invariance, i.e.f (eiχλ) =
f (λ), the measure dω(λ) is rotationally invariant, that is, for any space rotationR we have∫

dω(λ) f (Rλ) =
∫

dω(λ) f (λ). (41)

We shift the summation index in the second sum in equation (36) fromω to −ω. This
finally yields

Tn ≈ τ
∑
ω>0

γ (ω)N̄(ω)

∫
dω(λ) ‖λ · A†(ω)ψ̃‖2δ

[
λ · A†(ω)ψ̃

‖λ · A†(ω)ψ̃‖ − ψ

]

+τ
∑
ω>0

γ (ω)(N̄(ω)+ 1)
∫

dω(λ) ‖λ∗ · A(ω)ψ̃‖2δ

[
λ∗ · A(ω)ψ̃

‖λ∗ · A(ω)ψ̃‖ − ψ

]
.

(42)

Equations (34) and (42) determine completely the short-time behaviour of the
conditional transition probabilityT̃ . This short-time behaviour immediately yields
the differential Chapman–Kolmogorov equation for time-dependent Schrödinger picture
probability distributionP [ψ, t ] of the reduced system. Proceeding in precisely the same
way as has been explained in [17] we obtain the Liouville master equation

∂

∂t
P [ψ, t ] = i

h̄

∫
dx

{
δ

δψ(x)
G(ψ)(x)− δ

δψ∗(x)
G(ψ)∗(x)

}
P [ψ, t ]

+
∫

Dψ̃ Dψ̃∗ {W [ψ |ψ̃ ]P [ψ̃, t ] −W [ψ̃ |ψ ]P [ψ, t ]}. (43)
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Here, we have introduced the nonlinear operatorG(ψ),

G(ψ) ≡ Ĥψ + ih̄

2

∑
ω>0

(γ (ω)N̄(ω)〈ψ |A(ω) · A†(ω)|ψ〉)ψ

+ ih̄

2

∑
ω>0

(γ (ω)(N̄(ω)+ 1)〈ψ |A†(ω) · A(ω)|ψ〉)ψ (44)

the linear, non-Hermitian operator̂H ,

Ĥ ≡ Hm − ih̄

2

∑
ω>0

(γ (ω)N̄(ω)A(ω) · A†(ω)+ γ (ω)(N̄(ω)+ 1)A†(ω) · A(ω)) (45)

and the rate for a transition from̃ψ to ψ is given by

W [ψ |ψ̃ ] ≡
∑
ω>0

{
γ (ω)N̄(ω)

∫
dω(λ) ‖λ · A†(ω)ψ̃‖2δ

[
λ · A†(ω)ψ̃

‖λ · A†(ω)ψ̃‖ − ψ

]}

+
∑
ω>0

{
γ (ω)(N̄(ω)+ 1)

∫
dω(λ) ‖λ∗ · A(ω)ψ̃‖2δ

[
λ∗ · A(ω)ψ̃

‖λ∗ · A(ω)ψ̃‖ − ψ

]}
.

(46)

Equation (43) together with these definitions defines a unique stochastic processψ(t) in
the projective Hilbert space representing the stochastic evolution of the wavefunction of the
reduced (open) atomic or molecular system. As we shall explain in more detail in the next
section, the realizations of this process are piecewise deterministic paths in Hilbert space,
broken by instantaneous changes of the wavefunction, the so-called quantum jumps.

2.3. Representation as Hilbert space path integral

It should be clear that the realizations, orsample paths, of the stochastic process defined
by the Liouville master equation are paths in the Hilbert space of the open system. It is
therefore possible to give a Hilbert space path integral representation of the process. This
representation is obtained from the Kolmogorov forward equation [21] for the conditional
transition probability in the Schrödinger picture

T [ψ, t |ψ̃, 0] = (1 − F [ψ̃, t ])δ[ψ − gt (ψ̃)]

+
∫ t

0
ds

∫
Dφ1 Dφ∗

1

∫
Dφ2 Dφ∗

2 (1 − F [φ2, t − s])δ[ψ − gt−s(φ2)]

×W [φ2|φ1]T [φ1, s|ψ̃, 0]. (47)

The above equation is an integral representation of the conditional transition probability of
the stochastic process defined by the Liouville master equation (43). In fact, as is easily
checked, the solution of (47) is the solution of the Liouville master equation corresponding
to the initial conditionT [ψ, 0|ψ̃, 0] = δ[ψ − ψ̃ ].

Equation (47) admits a clear physical interpretation which is also the basis for the
development of a stochastic simulation algorithm: the first term on the right-hand side of (47)
is the contribution toT [ψ, t |ψ̃, 0] from those trajectories that start at the Hilbert spacetime
point (ψ̃, 0) and reach(ψ, t) without any quantum jump. Clearly, this contribution is given
by the delta functional that describes the deterministic part of the time evolution times the
probability that no jump occurs in the time interval [0, t ]. Thus we see that

gt (ψ) = e−iĤ t/h̄ψ

‖e−iĤ t/h̄ψ‖ (48)
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Figure 1. Graphical representation of the Kolmogorov
forward equation (47) for the conditional transition
probability of the stochastic process. The total probability
for reaching the Hilbert spacetime point(ψ, t) is given by
integrating over all intermediate statesφ1 andφ2 and over
all intermediate timess.

is the flow corresponding to the nonlinear Schrödinger-type equatioṅψ = −iG(ψ)/h̄ and

F [ψ, t ] = 1 − ‖e−iĤ t/h̄ψ‖2 (49)

gives the probability that a jump occurs during the time interval [0, t ] provided the state
ψ is given at time 0. The second term on the right-hand side of (47) is the contribution
to T [ψ, t |ψ̃, 0] from those trajectories that are interrupted by at least one quantum jump.
The integration times denotes the instant of the last jump. The probability of a particular
realization of this type is given by the (conditional) probabilityT [φ1, s|ψ̃, 0] of being in
some intermediate stateφ1 at times, times the probabilityW [φ2|φ1] ds for a jump fromφ1

to φ2 in the time interval [s, s + ds], times the probability that no further jump occurs in
the time interval froms to t . The contribution from all those paths is given by the sum
over all possible jump timess and over all intermediate statesφ1 andφ2. The content of
equation (47) is represented graphically in figure 1.

A typical realization of the stochastic process thus consists of smooth deterministic parts
according to the flow given by (48). These continuous parts are broken by instantaneous
changes of the wavefunction (quantum jumps)

ψ̃ −→ ψ = λ · A†(ω)ψ̃

‖λ · A†(ω)ψ̃‖ (50)

or

ψ̃ −→ ψ = λ∗ · A(ω)ψ̃

‖λ∗ · A(ω)ψ̃‖ . (51)

These jumps occur at the rates

d0+ [ψ̃,λ, ω] = γ (ω)N̄(ω) dω(λ) ‖λ · A†(ω)ψ̃‖2

or

d0− [ψ̃,λ, ω] = γ (ω)(N̄(ω)+ 1) dω(λ) ‖λ∗ · A(ω)ψ̃‖2
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respectively. The stochastic waiting time between two successive jumps is given by the
distribution function (49).

In order to construct the path integral representation we define the quantities

γ [ψ, t |ψ̃ ] ≡ (1 − F [ψ̃, t ])δ[ψ − gt (ψ̃)]

q[ψ, t |φ1] ≡
∫

Dφ2 Dφ∗
2 (1 − F [φ2, t ])δ[ψ − gt (φ2)]W [φ2|φ1].

The quantityγ [ψ, t |ψ̃ ] is the probability that at timet the stateψ is realized and that no
jump has occurred, provided at time 0 the stateψ̃ has been given. The quantityq[ψ, t |φ1] ds
represents the probability for the following event. Under the condition that at time 0 the
stateφ1 is given, a jump occurs immediately afterwards in the time interval [0, ds] and then
no further jump occurs until the stateψ is reached at timet . On using these quantities we
may write the Kolmogorov forward equation as

T [ψ, t |ψ̃, 0] = γ [ψ, t |ψ̃ ] + ε

∫ t

0
ds

∫
Dφ1 Dφ∗

1 q[ψ, t − s|φ1]T [φ1, s|ψ̃, 0] (52)

where we have introduced an expansion parameterε. This parameter allows us to write an
expansion of the propagator in terms of the numberN of quantum jumps:

T [ψ, t |ψ̃, 0] =
∞∑
N=0

εNT (N)[ψ, t |ψ̃, 0]. (53)

Inserting (53) into the Kolmogorov forward equation one obtains a recursion relation for
the contributionsT (N). Summing up these contributions and settingε equal to 1 we find

T [ψ, t |ψ̃, 0] = γ [ψ, t |ψ̃ ] +
∞∑
N=1

∫ t

0
dsN

∫ t−sN

0
dsN−1

. . .

∫ t−sN ···−s2

0
ds1

∫
DφN Dφ∗

N

∫
DφN−1 Dφ∗

N−1

. . .

∫
Dφ1 Dφ∗

1q[ψ, sN |φN ]q[φN, sN−1|φN−1] . . . q[φ2, s1|φ1]γ [φ1, s0|ψ̃ ].

(54)

Equation (54) is the Hilbert space path integral representation of the stochastic process.
It represents the conditional transition probabilityT [ψ, t |ψ̃, 0] as a sum over all paths
in Hilbert space that connect the Hilbert spacetime points(ψ̃, 0) and (ψ, t). Each path
is characterized by the numberN of quantum jumps, by the time intervalss1, s2, . . . , sN
between successive jumps, by the times0 ≡ t − s1 − s2 − · · · − sN until the first jump
occurs, and by the intermediate statesφ1, φ2, . . . , φN . According to (54) the propagator
is obtained by summing over the numberN of quantum jumps, and by integrating over
the time intervals between these jumps, as well as over the intermediate states. Again,
γ [ψ, t |ψ̃ ] is the contribution of no jump.

It is important to emphasize that the Hilbert space path integral representation
constructed above differs significantly from the influence functional representation of the
reduced density matrix [22, 23]. The latter is a sum over paths in the underlying classical
phase space and each path contributes a complex probability amplitude. In contrast, the
Hilbert space path integral (54) is a sum over paths in Hilbert space and each path contributes
a real and positive probability.
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3. Discussion

We shall discuss in this section the essential properties of the stochastic process defined by
the Liouville master equation (43) or, equivalently, by the Hilbert space path integral (54)
and elaborate in detail on its physical interpretation.

3.1. Unitary covariance

An important property is the unitary covariance of the stochastic process defined in
equation (43). To be more precise, consider a unitary (canonical) transformationU of
the Hilbert space of the reduced system and transform state vectors asψ 7→ ψ ′ = Uψ . By
virtue of the unitary invariance of the measure Dψ Dψ∗ the corresponding transformation
rule for the probability distribution reads

P ′[ψ ′, t ] = P [ψ, t ]. (55)

Unitary covariance then means that equation (43) is form-invariant, that is, the transformed
distributionP ′ also obeys the Liouville master equation (43) if, at the same time, the system
operatorsAi(ω) and the HamiltonianĤ are transformed as

Ai(ω) 7→ A′
i (ω) = UAi(ω)U

† Ĥ 7→ Ĥ ′ = UĤU †. (56)

In particular, unitary covariance implies that the stochastic formulation of the reduced system
dynamics does not depend on the specific representation of the Hilbert space of the reduced
system. An immediate consequence of the covariance is also that the probability distribution
does not depend on the phase of the wavefunction

P [eiχψ, t ] = P [ψ, t ] (57)

if the initial distribution is phase invariant, that is, ifP [eiχψ, 0] = P [ψ, 0]. Furthermore,
P [ψ, t ] is concentrated on the unit sphere in Hilbert space if the initial distribution is so,
since both the nonlinear evolution and the quantum jumps preserve the normalization of
the wavefunction. The stochastic process defined by the Liouville master equation may
therefore be considered as a stochastic process onprojectiveHilbert space.

3.2. Rotational invariance of the stochastic process

In addition to canonical covariance the stochastic process defined by equation (43) is
invariant under the group of rotations if the Hamiltonian of the reduced system is rotationally
invariant. This means the following. We denote byU(α) the unitary representation in
Hilbert space of the rotation of physical space around the axisα/α with the angleα ≡ |α|.
Thus, under rotations the state vectors transform asψ 7→ ψ ′ = U(α)ψ . SinceU(α) is
unitary and since the measure Dψ Dψ∗ is invariant with respect to unitary transformations,
the probability density is transformed as

P ′[ψ, t ] = P [U †(α)ψ, t ]. (58)

Starting from an initial distribution that is rotationally invariant,P ′[ψ, 0] = P [ψ, 0],
rotational invariance of the process means thatP is rotationally invariant for all times,
that is

P ′[ψ, t ] = P [U †(α)ψ, t ] = P [ψ, t ]. (59)

In other words, ifψ(t) is a realization of the process, then alsoU(α)ψ(t) is a realization
which occurs with the same probability. Note that rotational invariance is to be expected
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since the reservoir, that is, the quantized radiation field, is assumed to be in thermal
equilibrium and is therefore isotropic.

For a formal proof of rotational invariance it suffices to show thatP ′[ψ, t ] andP [ψ, t ]
obey identical equations of motion. SinceU(α) is a canonical transformation we already
know from the preceding subsection thatP ′ again fulfills the Liouville master equation if
the operatorsA(ω) and Ĥ are transformed according to equation (56). However, since
H is assumed to be rotational invariant and sinceA(ω) transforms as a vector operator
under rotations, it follows immediately from the scalar nature ofA†(ω) · A(ω) and from
equations (45) and (29) that neither̂H nor the nonlinear operatorG(ψ) change under
rotations, i.e.

Ĥ ′ ≡ U(α)ĤU †(α) = Ĥ

G′(ψ) ≡ U(α)G(U †(α)ψ) = G(ψ).

Finally, the transition rates (46) are likewise rotationally invariant, which means

W ′[ψ |ψ ] ≡ W [U †(α)ψ |U †(α)ψ ] = W [ψ |ψ ]. (60)

Note that this follows from the fact that the rotation of the vector operatorA(ω) can be
compensated by a corresponding rotation of the polarization vectorλ∗ on using the rotational
invariance of the measure dω(λ) (see equation (41)).

3.3. Physical interpretation of the process

The simulation algorithm described in section 2 is very similar to the algorithms proposed
in [2, 3, 24]. There is, however, an essential difference. Note first that according to
equation (46) for each atomic frequencyω we have, in contrast to the usual formulation,
two continuousfamilies λ · A†(ω) and λ∗ · A(ω) of jump operators parametrized by the
polarization vectorλ. The physical interpretation for this fact is obvious: the quantum jump
with operatorλ∗ · A(ω) corresponds to the emission and the jump with operatorλ · A†(ω)
corresponds to the absorption of a photon with polarizationλ. We shall emphasize the
fact that the structure of the transition ratesW [ψ |ψ̃ ] has been derived from first principles
and that it is the appearence of contiunous families of jump operators which ensures the
rotational invariance (see section 3.2).

In order to illustrate this point we shall discuss an interesting example that has been given
by Mølmer et al [24]. Consider a two-level atom. Both levels are three-fold degenerated
forming a (Jg = Je = 1)-multiplet, whereJg and Je are the total angular momenta of
the ground state and the excited state, respectively. We introduce the states|g,mg〉 and
|e,me〉 which are eigenstates of thez-component of the angular momentum operator with
eigenvalues ¯hmg andh̄me. The operatorA can then be written as

A =
∑

mg,me=±1,0

|g,mg〉〈g,mg|D|e,me〉〈e,me| (61)

where we have suppressed the frequency argument since we have only one atomic frequency
in this case. Since the dipole operatorD is a vector operator,A can be expressed in
terms of the reduced matrix element of the dipole operator and certain Clebsch–Gordan
coefficients. In addition to the coupling to the vacuum of the radiation field (T = 0)
leading to spontaneous emission, the atom is subjected to a resonant laser field linearly
polarized in they-direction. The important property of this example is that there exists a
state into which all trajectories of the process are ultimately trapped. This trapping state

8 = 1√
2
(|g,+1〉 + |g,−1〉) (62)



7850 H-P Breuer and F Petruccione

is a zero mode of the operator̂H , that is,Ĥ8 = 0. In [24] two different unravellings of
the quantum master equation for this situation have been investigated which correspond to
two different measurement schemes: first, measurement of the photon angular momentum
along thez-axis and, second, measurement of the photon angular momentum along they-
axis. As has been discussed in that paper, both schemes lead to different realizations of the
process. In the first case the possible transitions are|e, 0〉 → |g,−1〉 for a photon which
is right circularly polarized along thez-axis, and|e, 0〉 → |g,+1〉 for a photon which is
left circularly polarized along thez-axis. Consequently, the trapping into the state8 results
essentially from the non-unitary evolution generated byĤ . In the second case, however,
we have the transitions|e, 0〉 → 8 for left and right circularly polarized photons along
the y-direction, and|e, 0〉 → 8⊥ for a photon that is linearly polarized in they-direction,
where8⊥ = 1√

2
(|g,+1〉 − |g,−1〉) is perpendicular to8. Thus, in this case a transition

can directly lead to the trapping state.
In contrast to these unravellings which are based on a measurement of the photon angular

momentum along a specific axis and which therefore break the rotational invariance (as far
as the coupling to the bath is concerned), in our stochastic process the photon may have any
polarization along any direction in space. According to equation (46), the possible quantum
jumps of the stochastic process are given by

|e, 0〉 → cosϕ|g,+1〉 + sinϕ|g,−1〉 (63)

whereϕ is a stochastic angle uniformly distributed over the interval [0, 2π). Thus, for
ϕ = 0, π/2, π , 3π/2 we obtain those jumps corresponding to the measurement of the
photon angular momentum along thez-axis, whereas the casesϕ = π/4, 3π/4, 5π/4,
7π/4 lead to the transitions corresponding to the measurement along they-axis. We show
in figure 2 some realizations of the stochastic process defined by our Liouville master
equation for this model. It is immediately clear from the figure that both types of paths of
the wavefunction corresponding to the two measurement schemes discussed above occur in
our stochastic process.

The conclusion to be drawn from these considerations is the following. The difference
to the algorithms proposed by other authors is that a photon may be emitted or absorbed with

Figure 2. Six realizations of the stochastic process for a two-level system driven by a resonant
laser field polarized in they-direction. Each energy level forms a multiplet with angular
momentumJ = 1. For each realizationψ the figure shows, as a function of time, the probability
pts = |〈8|ψ〉|2 for being in the trapping state8 (see text).
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any polarization. Thus, in order to fix the stochastic process we do not need to prescribe
a specific measurement scheme. The reason is that our starting point for the derivation
of a stochastic dynamics for the reduced system is different from other approaches. In
our derivation it is the presence of the thermal reservoir that causes the jumps of the
wavefunction. These jumps appear asinstantaneouschanges of the wavefunction since the
relaxation times of the reservoir are assumed to be small on the time scale of the reduced
system. Also the jumps arestochasticsince the precise state of the reservoir is not known,
but only the probabilities of its various states, and since by the very procedure of the Markov
approximation the bath variables have been eliminated. For this reason we do not obtain
different unravellings of the corresponding quantum master equation, but rather a unique
stochastic process.

These statements do not mean that the various stochastic approaches based on different
unravellings, i.e. different measurement schemes are wrong. On the contrary, the stochastic
process defined by our Liouville master equation subsumes those unravellings that arise
from measurements of the photon angular momentum along all possible quantization axes.
To state it differently, our approach is based on the assumption that only the thermodynamic
properties of the state of the bath are known and that the properties of the emitted/absorbed
photons are only available insofar as they can be observed by observables that refer to the
reduced system, i.e. the atom. It is precisely for this reason that the integration over the
polarization vector appears in the expression for the transition ratesW [ψ |ψ̃ ].

It should be clear that a specific measurement scheme leads to a different physical
situation. If one wishes to perform a derivation (in the same sense as was done above)
for a stochastic process in the case that a certain measurement apparatus acts on the
system, one has to proceed as follows. Right from the beginning, one has to add to the
microscopic Hamiltonian (see section 2.1) a Hamiltonian describing the (metastable) states
for the apparatus, an interaction term describing the coupling of the system to the apparatus,
and a Hamiltonian describing a heat bath and its coupling to the apparatus [25, 26]. The
reduced probability distribution then describes the joint probability of the states of the atom
plus meter [27].

3.4. Expansion of the density matrix

It is now interesting to establish the relationship to the conventional description of open
quantum systems in terms of a quantum master equation for the reduced density matrix.
This relation is straightforward if one considers that in our formalism the density matrix
(5) is nothing but the covariance matrix of the stochastic wavefunction. Thus, the Hilbert
space path integral representation of the propagator immediately allows the derivation of an
analogous expansion of the density operator of the open system in terms of quantum jumps.
The expansion of the density matrix in terms of the number of quantum jumps

ρ(t) =
∞∑
N=0

ρ(N)(t) (64)

is found by inserting the expansion of the propagator (53) into the definition of the density
matrix (5). The contributionρ(0)(t) to the density matrix from the path without quantum
jumps is found to be

ρ(0)(t) = Stρ(0) (65)
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where ρ(0) is the initial value of the density matrix. Paths withN jumps lead to the
contribution

ρ(N)(t) =
∫ t

0
dsN

∫ t−sN

0
dsN−1 . . .

∫ t−sN−···−s2

0
ds1 SsN JSsN−1JSsN−2 . . . J Ss1JSs0ρ(0). (66)

In the two above expressions we have introduced two super-operatorsJ andSs which are
defined through their action on some operatorB by

SsB ≡ exp

(
− i

h̄
Ĥ s

)
B exp

(
i

h̄
Ĥ †s

)
(67)

and by

JB ≡
∑
ω>0

γ (ω)N̄(ω)

∫
dω(λ)λ · A†(ω)Bλ∗ · A(ω)

+
∑
ω>0

γ (ω)(N̄(ω)+ 1)
∫

dω(λ)λ∗ · A(ω)Bλ · A†(ω). (68)

The expansion of the density matrix given in equations (64)–(66) is formally identical
with the expansion of the density matrix obtained by Srinivas and Davies [28] with the
help of a model of a photodetector that performs continuous measurements. However, it
is important to remark that the physical basis of our derivation is different: the expansion
of the density matrix (64) follows directly from the expansion of the conditional transition
probability of the stochastic process. The latter, in turn, has been obtained by eliminating
the degrees of freedom of the thermal radiation field. Thus, the above expansion is valid at
finite temperatures and no model of detection enters its derivation.
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